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Abstract. The Hartree–Fock ground-state phase diagram of the one-dimensional Hubbard
model is calculated, constrained touniform phases, which have no charge density modulation.
The allowed solutions aresaturated ferromagnetism(FM), a spiral spin density wave(SSDW)
and adouble spin density wave(DSDW). The DSDW phase comprises two canted interpenetrating
antiferromagnetic sublattices.FM occurs for small filling,SSDW in most of the remainder of the
phase diagram, andDSDW in a narrow tongue near quarter (and three-quarter) filling. Itinerant
electrons lift the degeneracy with respect to canting angle in theDSDW. The Hartree–Fock states
are metallic except at multiples of a quarter filling. Near half filling the uniformSSDW phase is
unstableagainst phase separation into a half-filled antiferromagnetic phase and a hole-richSSDW

phase. The dependence of the ground-state wave number on chemical potential is conjectured
to be a staircase. Comparison is made with higher-dimensional Hubbard models and theJ1–J2

Heisenberg model.

1. Introduction

The Hubbard Hamiltonian, originally proposed as a model of itinerant magnets, has lately
gained new interest as a possible Hamiltonian for the cuprate superconductors. The
Hamiltonian is

H = H0 + U
∑

i

ni↑ni↓ (1)

where

H0 = −
∑
ijs

tij c
†
iscjs . (2)

Herei andj are site indices,s = ↑, ↓ is a spin index andU is the on-site Coulomb repulsion.
We shall be considering the one-dimensional model with nearest-neighbour hopping,tij = t

for |i − j | = 1 and t = 0 otherwise, and arbitrary band filling(0 < n < 2). One of the
few exact results is the Betheansatzground state for this case (Lieb and Wu 1968). An
approximate solution of the same model, especially one that breaks symmetries present in
the exact solution, therefore requires some justification.

The aim of the present work is to investigate spin structures in the Hubbard model.
Analogous questions arise in frustrated Heisenberg antiferromagnets, as reviewed by Schulz
et al (1994). The simplest example is the one-dimensional Hamiltonian

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2 (3)
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with J1, J2 positive (Majumdar and Ghosh 1969). The classical ground state is a spiral;
in the limit J1 � J2, the even and odd sites decouple and the ground state becomes
degenerate. In the spin-1/2 case the peak in the structure factor moves from the Néel value
π to π/2 with increasingJ2, as in the classical case (Tonegawa and Harada 1987, Zeng
and Parkinson 1995). Unlike in the classical case, dimerization (local singlet formation)
occurs forJ2/J1 of the order unity or larger (Haldane 1982). The dimerization is not
visible in two-spin correlation functions, but is seen in singlet–singlet correlations of the
form 〈(S0 · S1)(Si · Si+1)〉.

In certain situations the classical Heisenberg model possesses a line of degenerate
ground states (in addition to the global rotational symmetry). The standard example in
two dimensions is a square lattice antiferromagnet with nearest- and next-nearest-neighbour
exchange interactions, withJ1 < 2J2. The classical ground state here comprises two
interpenetrating antiferromagnetic sublattices, with no coupling between the Néel vectors.
The three-dimensional face-centred cubic antiferromagnet is similarly frustrated, with
collinear spin density waves degenerate with a continuum of noncollinear double and triple
spin density waves (see, e.g., Long and Yeung 1986). These degeneracies could be lifted
‘by hand’ by adding various terms to the classical Hamiltonian, for example anisotropy and
biquadratic interactions. Such terms are not needed; ‘ordering by disorder’ stabilizes the
collinear phase, the disorder being either quantum (Shender 1982) or thermal (Henley 1987)
in nature. On the other hand, Long (1989) and Henley (1989) have shown that nonmagnetic
impurities favour islands of the noncollinear phase localized about the impurity. Both
effects are due to the large transverse susceptibility of each antiferromagnetic sublattice
to fluctuations in the other sublattice. We will see here how an itinerant model provides
another mechanism for state selection.

Similar spin structures arise in the Hubbard model; indeed, this reduces to the Heisenberg
antiferromagnet in the half-filled two-sublattice large-U limit. We shall be investigating
Hartree–Fock (HF) solutions of the one-dimensional model. The paramagneticHF state
is always unstable forU > 0 in one dimension. Perfect nesting ensures that the band
susceptibility diverges atq = 2kF. The system is therefore unstable towards a spin density
wave at this wave vector for infinitesimalU . For finite U nonlinear effects can lead both
to a shift in this wave vector and a distortion. We recognize that mean-field theories in
general, andHF calculations in particular, overestimate the tendency towards magnetic order
(which the Mermin–Wagner theorem forbids in one dimension). However, the ordering may
survive in the form of short-range correlations.

Most recentHF studies of the Hubbard model relate to the two-dimensional case, with
reference to copper–oxygen planes in cuprate superconductors. An exhaustive search of
solutions of theHF equations is impractical, with global minima hard to obtain and in any
case dependent on the boundary conditions. Some authors restrict consideration to collinear
magnetization, following Machida and Fujita (1984). These found an exact solution for
a one-dimensional model with linearized dispersion: asoliton lattice with a snoidal spin
density wave. Most studies find coplanar spin textures in the two-dimensional Hubbard
model; however, Chubukov and Musaelian (1995) find evidence for noncoplanar textures.
Vergés et al (1991) identify a large number of stable or metastable configurations.Spiral
spin density waves(SSDW), with wave vectors varying continuously withU andn (Dzierzawa
1992), become unstable near half filling. Here theHF ground state appears to be a collinear
soliton lattice in which the holes are localized on walls between Néel-ordered domains
(Fujita et al 1991, Ichimuraet al 1992). The same conclusion follows from a fourth-order
Landau expansion, valid for weak coupling, with coefficients determined from the electronic
structure (Schulz 1990). Nearest-neighbour Coulomb repulsion tends to stabilize theSSDW
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phase against this hole clustering (Huet al 1994). One may identify various competing
processes: firstly, a collinear spin density wave will present the electrons with a spatially
varying potential, which may open a gap at the Fermi energy and stabilize the collinear wave.
On the other hand, largeU might favour the more uniform charge density in a metallicSSDW.
Competing ordered states, such as charge density waves and superconductivity, should also
be taken into consideration (Bachet al 1994); however, for positiveU in the absence of
other interactions theSSDW is favoured (Erikssonet al 1995). Some of the above features
can already be seen in the one-dimensional case discussed in this work.

Early interest of course concentrated on the three-dimensional model (Penn 1966). There
have been studies of spin structures in itinerant antiferromagnets, notably face-centred cubic
γ -Mn, where single and multiple spin density waves are degenerate ground states of the
classical Heisenberg model. Hirai and Jo (1985) show how fourth-order terms in transfer
integrals lift this degeneracy. However, spin density functional calculations reveal a very
small energy difference between these structures (Crockfordet al 1991). HereHF studies
of the one-dimensional Hubbard model can illustrate the origin of the energy difference.

Bach et al (1994) have studied a generalized unrestrictedHF theory, in which the
quadraticHF Hamiltonian allows particle-nonconserving terms and therefore treats magnetic
and BCS states on an equal footing. They report a number of theorems concerning the
ground-state symmetry, although not much is known rigorously about the finite-U Hubbard
model away from half filling.

The next section covers the solution of theHF equations. The solutions are restricted to
uniformstates, in which the local density of states is uniform up to spin rotation. Such states
fall in two two-parameter families:spiral spin density waves(SSDW) anddouble spin density
waves(DSDW). Each is parameterized by a field amplitude and the nearest-neighbour angle.
The band structure is calculated for both families, and the energy is minimized with respect
to the parameters. Section 3 presents the resulting phase diagram: theDSDW is the ground
state only in a narrow region near quarter (and three-quarter) filling. Near half filling, the
homogeneousSSDWis unstable towards phase separation into a half-filled antiferromagnetic
domain and a hole-rich (or electron-rich) domain. Finally, section 4 discusses the physical
significance of theDSDW and the stability of the states found.

A brief report of some aspects of this work has recently appeared (Samson 1995).

2. Computational method

2.1. The Hartree–Fock approximation

TheunrestrictedHF approximation minimizes〈{∆i , wi}|H |{∆i , wi}〉, the expectation value
of the Hubbard Hamiltonian (1) in the space of Slater determinants|{∆i , wi}〉. These states
are ground states of the noninteracting many-electron system in a spin- and site-dependent
Hamiltonian

HHF({∆i , wi}) = H0 +
∑

i

(−∆i · Si + wini) (4)

with

ni =
∑

s

c
†
iscis (5)

Si = 1

2

∑
st

c
†
isσst cit . (6)
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We take the number of sitesNa → ∞ and work in the canonical ensemble, with a fixed
numbern of electrons per site. The general problem is a minimization of a function with
a large number of local minima and saddle-points, dependent on boundary conditions and
differing little in energy, in a 4Na-dimensional space. We shall therefore be far less ambitious
and restrict consideration touniform states, defined as those with a site-independent spin-
projected local density of states, referred to the local spin quantization direction. Defining
the tight-binding Green function in the usual way as

[Gij ]st (E) = 〈is|(E − HHF)
−1|j t〉 (7)

where |is〉 is a one-electron Wannier orbital, we require the local tight-binding Green
function to be of the form

Gii(E) = a(E) + b(E)ei · σ. (8)

The only spatial dependence allowed is in the local magnetization directions, given by the
unit vectorsei . All atoms are equivalent and there is no charge density modulation. The
fields are then uniform in magnitude:

wi = 1

2
Un and ∆i = 1ei . (9)

The energy then becomes

EHF = min
{∆i ,wi }

VHF({∆i , wi}) (10)

where the minimization is subject to the constraints (9) and

VHF({∆i , wi}) = 1

Na
〈{∆i , wi} |HHF| {∆i , wi}〉 + 12

4U
+ 1

4
Un2. (11)

This is equivalent to the self-consistency condition

∆i = 2U 〈{∆i , wi} |Si | {∆i , wi}〉 (12)

(so in theHF solution the field is parallel to the magnetization).

Figure 1. Magnetization directions in
(a) theSSDW and (b) theDSDW phases.

2.2. Spin density waves

The uniformity condition (8) implies restrictions on the allowed directions, as we see from
the expansion

Gii(E) = gii(E) − 1

2
1

∑
j

gij (E)ej · σgji(E) + . . . (13)

where gij (E) is the tight-binding Green function of the band HamiltonianH0 (2).
Consistency between equations (13) and (8) for all energies requires the conditions

(ei−k + ei+k) ‖ ei ∀i, k. (14)
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The configurations are therefore coplanar, which implies vanishing torque on the local
moments (Small and Heine 1984). (Non-coplanar configurations are allowed in two or more
spatial directions.) This allows only two classes of configuration, as shown in figure 1:

(i) the spiral spin density wave (SSDW)

ei = (sinQi, 0, cosQi) (15)

(ii) the double spin density wave (DSDW)

e2k = (−1)k(0, 0, 1) e2k+1 = (−1)k(sinθ, 0, cosθ). (16)

(We take the lattice parameter to be 1, and the spins to be in thexz plane.) The
SSDW is specified by two parameters, the field amplitude1 and the pitch angleQ, varying
from 0 (the ferromagnetic phase↑↑↑↑ . . .) to π (the antiferromagnetic phase↑↓↑↓ . . .).
The DSDW is similarly specified by the amplitude1 and an angleθ . It may be thought
of as two interpenetrating antiferromagnetic sublattices with the staggered magnetization
vectors canted at an angleθ , varying between 0 (the collinear or dimerized configuration
↑↑↓↓ . . .) andπ/2, which coincides with theQ = π/2 SSDW↑→↓ ↼↽ . . .. In the classical
Heisenberg model the molecular field of one sublattice on the other vanishes in this phase,
giving a two-dimensional manifold of degeneracies; any translationally invariant two-spin
correlation function is independent ofθ . The DSDW is also a superposition of twoSSDW

states atQ = ±π/2.

2.3. Band structures

This restricted HF system is invariant under a subgroup of the symmetry group of the
Hubbard Hamiltonian. Although translational and spin rotational symmetry are both broken,
the Hamiltonian remains invariant under a simultaneous translation and spin rotation and
Bloch’s theorem still applies. We defer discussion of the stability of such configurations
against further symmetry breaking to section 4.2.

We calculate band structures of theHF Hamiltonian (4) in the standard way. Following
Korenmanet al (1977), we transform the spin quantization axis from thez axis to the local
axis ei = (sinθi, 0, cosθi):

cis =
∑

t

Ust (θi)dit (17)

where

U(θ) =
(

cosθ/2 − sinθ/2
sinθ/2 cosθ/2

)
. (18)

The transfer integralstij couple the d†↑ and d†↓ bands, and the band structures reduce to the
solution of second- and fourth-order secular equations for theSSDW andDSDW respectively.
A little algebra leads to the two bands

ESSDW(k) = −2t cos(Q/2) cosk ±
√

12/4 + 4t2 sin2(Q/2) sin2 k (19)

(with Brillouin zone−π < k 6 π ) in the SSDW phase and the four bands

EDSDW(k) = ±
√

12/4 + 2t2 ±
√

12t2(1 + sinθ cos 2k) + 4t4 sin2 2k (20)

(with Brillouin zone−π/2 < k 6 π/2) in theDSDW phase.
Figure 2 shows sample band structures, illustrating how dimerization opens gaps in the

foldedSSDWbands. The Fermi surface follows from the condition that the length ofk-space
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Figure 2. Band structures for (a) theSSDW with 1 = t andQ = π/2 (equivalent to theDSDW

with 1 = t andθ = π/2) and (b) theDSDW with 1 = t andθ = 0.

occupied is 2πn. For both families the Fermi surface always consists of either 0, 2 or 4
points.

2.4. Energy computation

The energy of these configurations, following equation (11), is

VHF(1, Q or θ) = 1

2π

∑
bands

(∫
E(k)<EF

E(k) dk

)
+ 12

4U
+ 1

4
Un2. (21)

For theSSDW energies (19) this is evaluated in terms of the elliptic integral of the second
kind, E(φ, k) (Gradshteyn and Ryzhik 1980):∫ kF

0
ESSDW(k) dk

= − 2t cos
Q

2
sinkF ± 1

2

[√
1 + p2 E

(
tan−1

[√
1 + p2 tankF

]
, p/

√
1 + p2

)
− p2 sinkF coskF√

1 + p2 sin2 kF

]
(22)

where

p = (4t/1) sin(Q/2). (23)

We evaluate theDSDW energies by numerical integration of the band structure (20).
For each point(n, U) in the phase diagram, we minimize the energies of theSSDW and

DSDW states with respect to the parameters(1, Q) and (1, θ) respectively. Because of
perfect nesting, a nonzeroSSDW solution always exists in someQ-interval for U > 0. The
DSDW phase requires a little more care, as the energy gain is small and a nontrivial solution
is absent in much of the phase diagram.
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Figure 3. (a) HF results for the 1D Hubbard model as a function of band fillingn with U = 4t .
The left-hand axis shows the pitchQ of the SSDW (bold dashed line). The right-hand axis shows
the energies. From top to bottom these are —· —: paramagnetic phase(1 = 0); · · · · · ·: SSDW

phase; ——:DSDW phase; bold line: exact solution. The short line — — — on the right is the
Maxwell construction (26). (b) TheHF phase diagram for uniform phases (full lines). Between
the dashed line andn = 1 the uniform phase is unstable to phase separation.

3. The phase diagram

3.1. Energies

Figure 3(a) shows theSSDW and DSDW HF energies forU = 4t and 06 n 6 1. Because
of particle–hole symmetry, the range 1< n 6 2 contains no further information and will
not be discussed further; references to quarter filling also apply to three-quarter filling.
For comparison, the top curve in the figure shows the energy of the paramagnetic solution
(1 = 0) and the bottom curve is Shiba’s (1972) numerical solution of the Lieb–Wu integral
equations for the exact ground-state energy of the one-band one-dimensional Hubbard model.
While theHF energies are not a good approximation to the exact ground state of this model,
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their relevance is discussed in section 4.2.
The SSDW ground state corresponds to saturated ferromagnetism for smalln. The pitch

Q then increases continuously from 0, reachingπ at half filling (n = 1). For smallU ,
the nesting condition impliesQ ≈ 2kF = πn; asU increases, theSSDW moves to smaller
Q, reducing double occupancy. TheDSDW phase is stable with respect to the paramagnetic
phase in a small range of fillings, and is only stable with respect toSSDW in a very narrow
region near quarter filling(n = 1/2). The DSDW is most stable at exactly quarter filling,
when the energy is minimized at the collinearDSDW θ = 0. The angleθ increases smoothly
and monotonically (initially linearly) with deviation from quarter filling.

The above discussion applies for the range 0< U < U1 ≈ 5.58t ; for U > U1 the DSDW

state always has higher energy than the competingSSDW ground state (withQ < π/2).
Only for U ≈ 4t can theDSDW region be seen in such a plot. It is difficult to find aDSDW

solution numerically for smallU . A fit in the ranget 6 U 6 3t suggests that the energy
gain in forming aDSDW has the form exp(−U2/U), with U2 ≈ 17t .

Suzumura and Tanemura (1995) have recently reported results on theHF ground state
and excitations of the quarter-filled Hubbard model. They consider a different class of
configurations, namely collinearQ = π/2 spin density waves. Such states are pinned to
the lattice by a small commensurability energy dependent on the phase of the wave. Their
ground state, with phaseπ/4, is precisely theDSDW (of energy−0.681t at U = 4t , as
calculated here). At all other phase angles, aQ = π charge density wave coexists with
the spin density wave. Maximum energy (−0.679t) occurs at zero phase, corresponding to
a magnetic configuration↑ · ↓ · . . .. This is still less than our minimumSSDW energy of
−0.674t . They find the value ofU2/t to be 4π

√
2 ≈ 17.8, compared with our numerical

fit of 17.

Figure 4. The energy of the uniformHF ground state
as a function of band fillingn for various values ofU .
The U = ∞ curve (24) corresponds toFM.

3.2. The phase diagram

Figure 3(b) shows the phase diagram in the(n, U) plane. ForU > Uc(n), indicated by
the bold line, the ground state is saturated (strong) ferromagnetism (FM) with the upper
band empty. The absence of unsaturated ferromagnetism is a consequence of the band-edge
divergence of the one-dimensional density of states. The energy of this state (forn 6 1) is
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independent ofU , as there is no double occupancy:

EHF = −(2/π)t sinnπ. (24)

The phase boundary (which appears to be linear for smallU ), can be calculated by expanding
the band structure (19) to O(Q2) and integrating; the line where∂2VHF(1, Q)/∂Q2 vanishes
is

Uc(n) = (2πn − sin 2πn)/(n sinnπ). (25)

The limit n → 1 givesUc → ∞. Thus, in the infinite-repulsion limit,FM is (as expected)
stable for alln 6= 1. At half filling (n = 1) the stable state isAFM. Figure 4 shows the
energy of the uniform ground state (FM, SSDWor DSDW) as a function ofn for various values
of U . Where the uniform ground state isFM, the energy coincides with theU = ∞ curve
(24). DSDW is, as already mentioned, stable in only a small region of the phase diagram.
All states are metallic apart from theAFM at half filling and theDSDW at quarter filling,
where the Fermi level lies in a gap.

3.3. Phase separation

A curious feature of theSSDWenergy is that it is not a convex function ofn nearn = 1. The
uniform phase is thereforeunstableto phase separation. Such an instability in the Hubbard
model was proposed by Visscher (1974) and is analysed here by means of a Maxwell
construction (Marderet al 1990, Arrigoni and Strinati 1991). The broken lineEps(n) in
figure 3(a) coincides withEHF(n) at n = 1 and is tangent to the curve atn = n1(U), which
is the boundary for phase separation. Forn1 < n < 1 the uniformSSDWis unstable towards
a state with volume fraction(n−n1)/(1−n1) of then = 1 AFM phase and(1−n)/(1−n1)

of the n = n1 SSDW phase. The energy of the phase-separated state is

Eps(n) = [(n − n1)EHF(1) + (1 − n)EHF(n1)]/(1 − n1) < EHF(n). (26)

The boundary is shown as a broken line superposed on the phase diagram in figure 3(b). To
the right of the boundary the uniform phase is unstable towards phase separation between
the AFM phase and theFM or SSDW phase at the boundary. ForU > 8t (approximately), the
only phases areFM and AFM. Andriotis et al (1993), in supercell calculations on the one-
dimensional Hubbard model with collinear moments, see a phase separation of just this form
for largeU . In one dimension the phase separation is an artefact of theHF approximation,
as the exact energy is a convex function ofn (Shiba 1972). If phase separation does
occur in the Hubbard model in higher dimensions, it is a consequence of purely short-range
interaction and would be suppressed by long-range Coulomb repulsion. On the other hand,
we do not know whether the domains are of macroscopic size. The instability might signal
phase separation at a more local level—the migration of holes to antiferromagnetic domain
walls in a soliton lattice. This possibility depends on the sign of the domain wall energy.

Because of the kink in the energy at half filling there is no separation inton > 1
and n < 1 phases. A similar phase separation does occur between theSSDW and DSDW

phases, implying that the pureDSDW phase is only stable at exactly quarter filling. To avoid
complicating the diagram, this is omitted from figure 3 but is discussed in section 4.2.

4. Discussion

4.1. Interpretation of theDSDW

The DSDW phase illustrates a number of physical phenomena. Firstly, it is an extreme case
of a commensurate soliton lattice: an antiferromagnet with (uncharged) domain walls on
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alternate bonds. Secondly, the collinearDSDW is clearly stabilized near quarter filling by
the opening of a gap at the Fermi energy (figure 2).

The HF energy can be expanded in the field:

VHF(1, {ei}) = VHF(0, {ei}) + 1

Na
12

∑
ik

Jkei · ei+k + O(14). (27)

The qualitative features of the phase diagram follow from a theorem concerning the
dependence of susceptibilities on band filling (Heine and Samson 1980, 1983). Consider
the moment expansion of the Green function

Gij (z) = [(z − H)−1]ij = δij z
−1 + Hijz

−2 +
∑

k

HikHkj z
−3 + . . . (28)

whereH is a tight-binding Hamiltonian. The energy difference between two configurations
A and B changes signr times as a function of band filling if the leading term in the
difference of Green functions has the asymptotic form

Tr
∑

i

[G(A)
ii (z) − G

(B)
ii (z)] ∼ z−r−3 (29)

for large z, where Tr is a trace over spin. A consequence is that the effective nearest-
neighbour exchange interactionJ1 changes sign twice in the band 0< n < 2, while J2

changes sign four times. At quarter filling,J1 is small and ferromagnetic andJ2 is larger
and antiferromagnetic. Longer-range interactions are smaller. Hence theDSDW region
of the phase diagram of the Hubbard model corresponds to the dimerized region of the
Majumdar–Ghosh model discussed in the introduction.

The same theorem, applied to nonlinear susceptibilities, describes the state selection
between collinear and noncollinearDSDW. The leading term in theθ -dependence of the
Green function must involve a biquadratic term in the angles. Leaving out the terms
irrelevant to the present argument and summing equivalent paths gives

Tr Gθ
00(z) = . . . − 1

4Tr (∆0 · σt01∆1 · σt10∆0 · σt01∆1 · σt10) z−9 + . . .

= . . . − 1
214t4[(e0 · e1)

2 − |e0 × e1|2]z−9 + . . .

= . . . − 1
214t4 cos(2θ)z−9 + . . . . (30)

The energy difference between collinear and noncollinearDSDW states with equal1 therefore
hassix zeros as a function of band filling (and a cos 2θ dependence). This agrees with the
numerical results: the collinear phase is favoured near quarter, half and three-quarter filling,
and the noncollinear phase at other values. Similar behaviour is indeed seen in calculations
on γ -Mn (Long and Yeung 1986, 1987). The two-dimensional analogue seems to be the
windmill configuration observed by Ichimuraet al (1992) in a quarter-filled square lattice.
We note that the conclusion about the sign of the energy difference is not restricted to small
1, where a Landau expansion of the form (27) can be truncated at fourth order (Schulz
1990).

4.2. Stability and relevance of solutions

The solutions presented here (except at quarter and half filling) are metallic. In a one-
dimensional system we would still expect an instability towards a nonuniform state that
opens a gap at the Fermi energy. Auerbach and Larson (1991) find just such an instability
towards a local increase in the spiral pitch in thet–J model. A similar instability is seen in
the two-dimensional Hubbard model (Zhou and Schulz 1995). Phase separation is a further
indication of this instability. If the filling is rational, the distortion will be commensurate; if
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it is irrational, an incommensurate distortion leading to a Cantor set spectrum is a possible
outcome (Ostlund and Pandit 1984). Early studies of such spectra were more concerned
with charge density waves, which, unlike the uniformSSDW, modulate the lattice potential.
A similar modulation in the latter case requires a further distortion of theSSDW, leading to
coexisting charge density waves. This will result in a small kink in theE(n)-curves as in
figure 4. The trueHF energy, according to the Maxwell construction, will be the convex
hull of E(n). The ground-stateQ, plotted as a function of chemical potential for constant
U , would then be a staircase. TheDSDW results and the small lock-in energies suggest that
any energy gain will be small, and the tongues in the phase diagram will be correspondingly
narrow. However, discussion of the fractal properties of this phase diagram will take us
rather far from the physics of the Hubbard model.

The results reported here are consistent with known exact results for unrestricted
generalizedHF studies (Bachet al 1994). Bachet al discussinter alia the HF ground
state of the repulsive Hubbard model on a bipartite lattice. This isAFM for half filling,
and FM in the U → ∞ limit for all other fillings. They cannot obtain similar results in
the interior of the phase diagram. However, the large gap and the work of Suzumura and
Tanemura (1995) strongly suggest that the collinearDSDW is the true unrestrictedHF ground
state at quarter filling.

It must be admitted again thatHF calculations fail to give the correct ground-state
symmetry, and give poor ground-state energies; quantum fluctuations destroyAFM andSSDW

order in one dimension, but may retain short-range correlations of that form. The higher-
order correlations that distinguish theDSDW would be harder to see. Agreement appears to
be better in two dimensions whereHF solutions are a useful leading approximation (Mehlig
1993, Mehlig and Fulde 1994). For two and more dimensions the space to explore, even
for uniform configurations, is much larger and an exhaustive study would be more time-
consuming. On the other hand, symmetry breaking is possible in the ground state, soHF

calculations may give a ground state of the correct symmetry. The paramagnetic phase will
be stable for smallU (except for in the half-filled bipartite lattice), and the unrestrictedHF

energyE(n) will be a smoother function than in one dimension, as it will be more difficult
to open a gap. The calculations here can then be considered as a toy model, nevertheless
giving physically relevant predictions of spiral phases and a special phase at quarter filling.

While theHF results give little information on the integrable one-band one-dimensional
model, the approximation is more useful in the degenerate case (which is not integrable).
Many-electron atoms may be modelled by anN -band Hubbard Hamiltonian with inter-
orbital Coulomb repulsion(U/4N)n2

i and the Hund’s rule term−(I/N)S2
i , dependent on

the total charge and spin on the atom. There is no reason that these should be governed by
the same coupling constant forN > 1. In the case whereU � I , Coulomb repulsion will
suppress the phase-separated and nonuniform configurations, thereby stabilizing theSSDW

against phase separation. TheHF results for uniform states are independent ofN , and are
the leading approximation in the limitN → ∞.

The energies obtained here may also be useful for finite-temperature properties. In
a study of the thermodynamics, Samson (1989) fitted theSSDW energies to an extended
spherical model, obtaining indications that the correlation functions fall more slowly with
temperature than in the Heisenberg model. That approximation however cannot distinguish
the DSDW from theQ = π/2 SSDW; the small energy gain suggests they would have little
thermodynamic significance.

While HF solutions of the one-dimensional Hubbard model clearly cannot give definitive
answers to questions about higher dimensions, they do provide a model in which many of
the physical processes underlying state selection operate in a transparent way.
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